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The method of fundamental solutions is formulated ior the solution of 
steady-state free boundary problems. The method is tested on three 
such problems and the results compared to published results obtained 
with other numerical methods. @ 1992 Academfc Press. Inc. 

1. INTRODUCTION 

In recent years the method of fundamental solutions 
(MFS) has proved to be an effective alternative to boundary 
element methods for the numerical solution of certain ellip- 
tic boundary value problems. The first applications of the 
MFS were to two- and three-dimensional linear potential 
problems (Mathon and Johnston [17], Fairweather and 
Johnston [5], and Johnston and Fairweather [7]). Subse- 
quently the method was applied very effectively to nonlinear 
plane potential problems (Karageorghis and Fairweather 
[ 13]), to problems involving the modified Laplace/ 
Helmholtz equation (Johnston and Mathon [S], Mac- 
Done11 [16]) and to biharmonic problems (Karageorghis 
and Fairweather [l&12]). 

Traditional boundary methods, such as the boundary 
integral equation method, have been used extensively for 
the numerical solution of steady-state free boundary 
problems (Liggett [15], Kelmanson [14], Aitchison and 
Karageorghis [3], Karageorghis [9], Aitchison and 
Karageorghis [4]). These methods deal directly with the 
boundary of the region of the problem under consideration 
and thus have an advantage over domain discretization 
methods, such as finite element or finite difference methods. 
Since in free boundary problems it is the boundary of the 
region which is of prime interest, boundary methods are 
ideally suited for the numerical solution of such problems. 
Further, the determination of the position of the free 
boundary introduces variables which appear nonlinearly in 
the global system of equations, irrespective of the numerical 
method used. One is therefore required to devise iterative 
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schemes for the solution of the problem. As well as offering 
the advantages of boundary methods over domain discret- 
ization methods for the solution of free boundary problems, 
the MFS can absorb these nonlinearities naturally at little 
extra effort, thus avoiding the need to design an appropriate 
iterative scheme. 

In Section 2, the MFS is formulated for the solution of 
free boundary problems. Section 3 describes the details 
involved in the application of the method to such problems 
and examines a problem with a known analytical solution. 
Sections 4, 5, and 6 present applications of the method to 
three problems from the literature. As is often the case with 
free boundary problems each of these has different features 
and the flexibility of the method is highlighted in each 
application. 

2. FORMULATION OF THE MFS FOR SOLVING 
FREE BOUNDARY PROBLEMS 

The MFS is first described for the solution of a fixed 
boundary problem governed by Laplace’s equation. 
Following Mathon and Johnston [17], the following 
problem is considered 

V24(P) = 0 for PEQ, (2.1) 

subject to the boundary condition: 

W(P) = 0 for pEa52. (2.2) 

The solution to the boundary value problem (2.1)-(2.2) is 
approximated by 

where 

#dCT C Pi) = 5 cjk(tj, Pi), 
j= 1 

(2.3) 

c= cc,, c2, c3, ..., C,lT> 

k(tj, Pi) = log rji, 

rji= Ctr,, - Pill2 + (tj*-Ppi*)211’2 
(2.4) 

t= Cll,, t1,, t2,, t22’ ...? f‘v,’ ~,*I=. 
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The pair (tJ,, tjZ) represents the coordinates of the 
singularity tj (a point outside 0) and the pair (pi,,plZ) are 
the coordinates of the point pi(pi~ a). The solution to 
(2.1)-(2.2) is thus approximated by a linear combination 
of fundamental solutions of Laplace’s equation. The coef- 
ficients cj and the positions of the singularities tJ are chosen 
so that $N satisfies the boundary condition (2.2) as well as 
possible, in a least squares sense. This is done by choosing 
M points pi on the boundary aQ and subsequently mini- 
mizing the functional 

F(c, t, = f IB4dc, 4 Pill22 
i= 1 

(2.5) 

which is nonlinear in the tj, using a nonlinear least squares 
algorithm. 

In the case of a free boundary problem, one considers 
Laplace’s equation 

V’&P)=O for PEQ, (2.6) 

subject to the boundary conditions 

W(P) = 0 for P E afh,,,, 

and 

(2.7) 

where aQ = aR,,,,, u %2rREE, aQ,,,,, being the fixed 
part of the boundary and %2,,,, being the free part of the 
boundary, the geometry of which is unknown. If M,,,,, 
and MFREE boundary points are placed on the fixed and free 
parts of the boundary, respectively, it is now necessary to 
minimize the functional 

MFlXED 
F(c, 4 a, = 1 IWN(C, t, Pi)12 

i= 1 

MFREE 

+ i;l {lB14fdc, t, Ml2 

+ IB2ddC, 4 bi)l”} (2.9) 

which is now also nonlinear in the coordinates of the free 
boundary points P, P, = (pi,, pil), i = 1, 2, . . . . M,,,,. In 
most practical applications it is sufficient to allow only a 
subset of the coordinates of the free boundary points to 
move; e.g., one may choose to allow only the y-coordinates 
to move while keeping the x-coordinates fixed and vice 
versa. 

A point of practical importance arises when the boundary 
conditions on the free boundary involve the outward 
normal derivative alan of 4N. In order to obtain this one 

requires the knowledge of the outward unit normal vector n 
at each free boundary point Pi, i= 1,2, . . . . M,,,,. For a 
curve y = g(x) the outward unit normal vector is given by 

n = ( i g’(x), k 1) 
Jqi-y’ 

(2.10) 

For each set of free boundary points we update n by using 
a central difference approximation: 

gf(Bi,)=~l+12-~i-l:, 
Di+ll-Pz-1, 

i = 2, . . . . M,,,, - 1. (2.11) 

Also> s’(d,,) and g’@MFREE, ) may be approximated by one- 
sided finite difference approximations. 

3. APPLICATION OF THE MFS 

As in previous applications of the MFS (e.g., [ 123) the 
least squares algorithm used is the MINPACK routine 
LMDIF, which implements a modified version of the 
Levenberg-Marquardt algorithm. 

The routine LMDIF minimizes the sum of squares 

F= f l.f12> 
i=l 

where in the present application 

.fi= : cjBk(t,, Pi), 
j=l 

i = 1, . . . . M,,,,, 

f, = t cjBlk(tj, Pi), 

j=l (3.2) 
i = MFIXE~ + 1, . . . . MFlxED + MFREE 

j=l 

where M = M,,,,, + 2 MFREE. In this routine one is not 
required to provide the Jacobian, which is approximated 
internally by a finite difference scheme. LMDIF terminates 
when either the user-specified tolerance is achieved or the 
user-specified limit on the number of function evaluations is 
reached. 

An important factor in the least squares procedure is the 
initial placement of the singularities. In the fixed boundary 
case, an efficient rule is to distribute both the boundary 
points and the starting singularities, uniformly around the 
boundary. The singularities are initially placed at a fixed 
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(user-specified) distance along the normals to the surface 
(for details see Ho-Tai et al. [6] or Karageorghis and 
Fairweather [9]). The starting values of the coefficients cj 
are all taken to be equal to the same constant (usually 
unity). 

In the solution of free boundary problems, the same 
rules are applied to the fixed part of the boundary. A denser 
distribution of both boundary points and singularities 
is usually taken in the region of the free boundary. The 
initial distance of the singularities from the boundary in 
the region of the free boundary is taken to be shorter than 
for singularities corresponding to the fixed part of the 
boundary. The initial shape of the free boundary depends to 
a great extent on the particular problem under considera- 
tion. In each of the cases examined in this study the free 
boundary is initially set to be a straight line. Further details 
concerning this choice accompany each example. 

One of the drawbacks of the method is the tendency of the 
singularities to move to the interior of the domain of the 
problem under consideration. In the present implementa- 
tion an internal check is added to the subroutine of LMDIF 
which evaluates the functionsfi. In it, the positions of the 
singularities are checked with respect to an approximation 
to the domain of the problem (since the exact domain is not 
known). If a singularity lies inside the domain it is removed 
and repositioned at the exterior of the domain. 

Before examining the application of the method to 
physical problems, the MFS is tested on a problem which is 
free of singularities and for which an analytical solution is 
known. This is done in order to investigate the convergence 
of the method as M, N, and the number of function evalua- 
tions (NFEV) are increased. 

The problem examined has the exact solution 
4(x, y) = 0.5 + y and its free boundary is given by 
h(x) = 0.5 + a cos 7c(x - 0.5). The problem is solved in 
-0.5 6 x < 0.5 for y 3 -0.5. The boundary conditions are 

84 -&=a on x = -0.5, -0.5 < y < h( -0.5), 

w -&=o on x = 0.5, -0.5 < y < h(0.5), 

f$=o on y= -0.5, -0.5GxGO.5 

and 

fj = 0.5 + a cos n(x - 0.5), 

g = (1 + u2n2 sin2 77(x - 0.5))-“2 
i 

on the free boundary. 

The unknowns of the problem are the solution d(x) and 
the shape of the free boundary h(x). An initial guess for h(x) 

581/98/l-9 

is taken to be a straight line joining the points ( -0.5, h(0.5)) 
and (0.5, h(0.5)), where h( -0.5) and h(0.5) are unknown 
(and therefore given appropriate starting values). The 
regularity of the solution forces the free boundary to be 
horizontal at the points (-0.5, h( -0.5)) and (0.5, h(0.5)), 
and these conditions are enforced numerically. The initial 
boundary is divided into equally spaced boundary points 
and the singularities are initially spaced uniformly around 
the boundary. The y-coordinates of the free boundary 
(including the end points) are allowed to move. 

Numerical experiments were carried out for three values 
of the amplitude a and various numbers of boundary points, 
singularities and function evaluations. Since we seek to 
establish the convergence of the method, a sufficiently large 
number of function evaluations was used for each case, in 
order to achieve numerical convergence. In Tables I(at(c), 
we give the number of function evaluations, number of 
boundary points, number of singularities, and the maxi- 
mum error in the height of the free boundary at the free 
boundary points, for a = 0, 0.05, and 0.2, respectively. For 
a = 0, the exact solution is a straight line (y = 0.5) and it 
appears that very few degrees of freedom are sufficient for 
its accurate representation. For a = 0.05, 0.2, the problem 
becomes harder and more degrees of freedom are required 
to represent the free boundary accurately. In particular, 42 

TABLE I 

MFS Results for Test Example with Exact Solution 

NFEV Boundary points (N) 

(a)a=O Q(4) 62th) Q(8) 

1000 0.9855( -4) 0.1399(-3) 0.2963( - 5) 
2000 0.3848( -4) 0.2334( -4) 0.9393( -7) 
3000 0.2114(-4) 0.1112(-4) 0.8001( -7) 
4ooo 0.1346(-4) 0.6308( - 5) 0.7280( - 7) 
5ooo 0.9755( - 5) 0.3975( - 5) 0.6768( - 7) 
6000 0.6913( -5) 0.2727( - 5) 0.6267( - 7) 

(b) a = 0.05 Q(4) 838) 122(12) 

loo0 0.6731( -3) 0.1770( -3) 0.3377( - 3) 
2000 0.2667( - 3) 0.9691( -4) 0.1533(-3) 
3000 0.2242( - 3) 0.7901( -4) 0.7286( -4) 
4000 0.2274( - 3) 0.7145( -4) 0.4499( - 4) 
5000 0.2287( -3) 0.6721( -4) 0.3478( -4) 
6000 0.2303( -3) 0.6495( -4) 0.3138( -4) 

(c)a=0.2 484) Q(8) 122( 12) 

1000 0.3022( - 2) 0.1346( -2) 0.7989( - 3) 
2000 0.2635( - 2) 0.9199( -3) 0.4896( - 3) 
3000 0.2604( - 2) 0.8244( - 3) 0.3989( - 3) 
4000 0.2610(-2) 0.7804( - 3) 0.3645( - 3) 
5000 0.2612( -2) 0.7515(-3) 0.3425( - 3) 
6000 0.2613(-2) 0.7340( - 3) 0.3290( - 3) 
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boundary points are clearly not sufficient, with the error 
stabilizing at a relatively large value. 

All computations were performed in double precision 
on an IBM 3081-D32 computer located at Southern 
Methodist University. 

4. EXAMPLE 1: SEEPAGE THROUGH 
A RECTANGULAR POROUS DAM 

In the first example the MFS is applied to the problem 
of free surface flow through a rectangular block of soil 
depicted in Fig. 1. Water seeps slowly from the left (AB) 
to the right (DC) through the dam. In this problem, the 
governing equations in terms of the potential function 
4(x, Y) are 

V’qd=O in ABCDEA, (4.1) 

subject to the boundary conditions 

qb=H-h on AB, (4.2) 

a4 0 -= 
an (4.3) 

qJ=o on CD, (4.4) 

d=Y on DE, (4.5) 

and 

d=Y 

I 

(4.6) 

ad 0 

on AE. 
-= 
an 

(4.7) 

The unknowns in this problem are the potential function 

FIG. 1. Seepage through a rectangular porous dam. 

~(TJJ$) the shape of the free boundary AE, and the height 
0 . 
The MFS is applied to the case when H = 10, h = 3, and 

L = 10. The free boundary is initially taken to be a straight 
line through the point A, intersecting the line CD at the 
point Eo, where h < CEO < H. In order to determine the 
free boundary AE, the x-coordinates of the free boundary 
points are kept fixed, while the y-coordinates (including the 
boundary point E) are allowed to move. The y-coordinates 
of the boundary points on DE are readjusted (in LMDIF) 
for each value of the unknown ho. The problem has 
a boundary singularity at E and therefore in the neigh- 
bourhood of E a denser grid is imposed by placing the 
x-coordinates of the free boundary points at a distance 

2 

d,=L & , 
( ) 

j= 1, 2, . . . (4.8) 
FREE 

from the vertical line CF. Similarly a denser grid is placed 
on DE. 

A sample of results obtained using the MFS is listed 
in Table II. The height ho which locates the free surface- 
seepage intersection is found to be in good agreement with 
the analytical solution of Polubarinova-Kochina [ 191 
(ho z 4.20) and the results of Liggett [ 151 obtained using a 
boundary integral equation method. Also listed in Table I 
are the number of function evaluations (NFEV) and the 
corresponding CPU times required for each computation. 

Further, Fig. 2a-e show the locations of the singularities 
and of the free surface from the starting guess to their 
location after 1000 function evaluations, for the case when 
M = 98, N = 10, M,,,, = 20, in steps of 250 function 
evaluations. Finally Fig. 2f shows Lhe positions of the free 
boundary and singularities for much fewer degrees of 
freedom. 

TABLE II 

MFS Results for Example 1 

‘44 M FREE N ho NFEV CPU(s) 

68 10 I 4.254 400 12.20 
68 10 7 4.147 600 17.60 
68 10 7 4.212 800 23.31 
68 IO 7 4.223 1000 29.64 

98 20 10 4.245 500 31.80 
98 20 10 4.210 750 47.60 
98 20 10 4.260 1000 61.20 
98 20 10 4.269 1250 74.66 

128 30 13 4.193 500 54.67 
128 30 13 4.226 750 85.54 
128 30 13 4.273 loo0 113.58 
128 30 13 4.273 1500 156.38 
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y” = d 5.000 HO _ 4.200 

MF= 20 

II = 1c 

HO =4.245 

M,= ;a 

II = 10 

e 

I \ 
‘\ I 

- 

k0 = 4.269 

q= 20 

11 = IO 

d 

HO =4.270 

M,= 20 

N =lO 

f 

- 
HO =4.229 

MF= 6 

N = 5 

FIG. 2. Free boundary for Example 1 with M = 98, N = 10, MFREE = 20: (a) Initial setting; (b) NFEV = 250; (c) NFEV = 500; (d) NFEV = 750; 
(e) NFEV = 1000; (f) M = 60, MFREE = 6, N = 5, NFEV = 200. 
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5. EXAMPLE 2. RIABOUCHINSKY CAVITY FLOW 

This example examines the planar flow of an incom- 
pressible inviscid fluid past a plate in a channel of finite 
width and infinite length. The plate is placed symmetrically 
in the channel at right angles to the flow. The aim is to find 
the shape of the cavity formed behind the plate. 

One may consider a model by Riabouchinsky [20], 
depicted in Fig. 3, in which the cavity is closed by introduc- 
ing an image plate downstream of the plate. By exploiting 
the symmetry possessed by the flow about the axis of the 
channel and the vertical line through the midpoint of the 
line joining the centres of the two plates, only a quarter of 
the region needs to be considered (see Fig. 4). The model 
can be non-dimensionalised (see Aitchison [2]) leading to 
the following problem for the stream function $ in the 
region ABCDEFA (Fig. 4), 

v2*=o in ABCDEFA, (5.1) 

subject to the boundary conditions 

a* z=O on CD, AB (5.2) 

*=o on DE, EF (5.3) 

$=l on BC (5.4) 

and TABLE III 

(5.5) 

(5.6) 

where the unknowns in this problem are the stream function 
$(x, y), the shape of the free boundary FA, the height of the 
point A (b), and the constant q. 

The MFS is applied to the problem with L = 0.5, CD = 1 
(h = l.O), DE= 1.5, d= 0.1. The free boundary is initially 
taken to be a straight line through the point F, intersecting 
the line AB at the point A,, where h - d > A,B > h/2. To 
determine the free boundary FA, the x-coordinates of the 

I 

I 

Plate cavity I 

c, 

image Plate 

J __--- _--mm _---- --s-m- 
I 

I 

I 

I 

FIG. 4. Region of solution for Example 2. 

free boundary points are kept fixed and their y-coordinates 
allowed freedom of movement (including the point A). As in 
the previous example the y-coordinates of the boundary AB 
are readjusted for each value of the y-coordinate of A. The 
initial value of q is taken to be equal to zero. 

The problem has a boundary singularity at the point F. 
Account of this singularity may be taken by exploiting 
knowledge of the shape of the free boundary in the 
neighbourhood of F (Aitchison [2] ), where in terms of local 
coordinates about F, 

4 = $13 q=+,(=y+;-d . 
> 

(5.7) 

MFS Results for Example 2 

M Mm, N 4 b NFEV CPU(s) 

132 15 12 1.4491 0.2127 1000 83 
132 15 12 1.4723 0.2200 2000 160 
132 I5 12 1.4963 0.2306 3000 235 
132 15 12 1.5154 0.2386 4000 319 
132 15 12 1.5219 0.2418 5000 395 
132 15 12 1.5199 0.2409 6000 463 

142 20 14 1.4429 0.2297 1000 116 
142 20 14 1.4880 0.2276 2000 218 
142 20 14 1.4899 0.2284 3000 307 
142 20 14 1.4943 0.2302 4000 410 
142 20 14 1.4992 0.2323 5000 501 
142 20 14 1.5064 0.2354 6000 598 

162 30 15 1.4906 0.2867 1000 146 
162 30 15 1.5421 0.2584 2000 268 
162 30 15 1.5357 0.2489 3000 401 
162 30 15 1.5310 0.2473 4000 524 
162 30 15 1.5305 0.2470 5000 656 
162 30 15 1.5302 0.2469 6000 777 

Mogel and Street [IS] 1.562 0.245 
Aitchison [2] 1.429 0.2013 
Aitchison and Karageorghis [4] 1.4753 0.2222 

FIG. 3. Riabouchinsky cavity model. 
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FIG. 5. Location of free boundary and singularities for Example 2 with M = 162, M rREE = 30, N= 15: (a) initial setting; (b) NFEV = 1000; 
(c) NFEV = 2000; (d) NFEV = 3000. 

If this behaviour is assumed at the first boundary point, 
clearly a= t,/rji . 2’3 It is therefore possible to use this known 
behaviour of the free boundary to derive the unit normal n 
at the first (or first few) boundary point(s) instead of using 
the finite difference scheme described in Section 2. In most 
numerical experiments this behaviour is imposed only at the 
first free boundary point. At the free boundary point A, the 
normal to the free boundary is assumed to be vertical. 

A set of results obtained using the MFS is listed in 

N 

“b 

N 

+ Ic 

%I, ,y-----~ 
0.0 r : 0.2 0.3 0.4 0.5 

FIG. 6. Magnification of free boundary for Example 2: (a) M = 132, 
M rREE=15, N=12; (b)M=142, MFasE=20, N=14; (c)M=162, 
M FREE=30, N= 15. 

Table III for three different discretizations of the problem. 
For each discretization, results for the constant value q of 
the normal derivative along the free boundary and the 
height b are listed for various numbers of function evalua- 
tions (NFEV) and the corresponding CPU times required 
for each computation. For each set of degrees of freedom, 
the values of q and b obtained are in close agreement 
with the corresponding values of Mogel and Street [ 183 
obtained using a finite difference method, Aitchison [2] 
obtained using a finite element method and Aitchison 
and Karageorghis [4] obtained using a boundary integral 
equation method. 

The initial positions of the singularities and the initial 
location of the free boundary are shown in Fig. 5a for 
the case when A4 = 162, MFREE = 30, N = 15. Figures 5bd 
show the successive positions of the singularities and 
locations of the free boundary for NFEV = 1000, 2000, and 
3000. Magnified plots of the free boundary for three sets 

e = ‘3.228 

0 = i.490 

b! =I4 

M,=20 

Cl.8 cl.8 

c.5 0.6 
-- 

0.4 M-.4- 

FIG. 7. Stream function contours for Example 2 with M= 142, 
M FREE = 20, N = 14. 
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of discretizations are presented in Fig. 6. From Fig. 6c it is TABLE IV 
evident that the method captures the correct behaviour of 
the free boundary near the point F more accurately as the 

Values of q with Number of Function Evaluations NFEV for 

number of boundary points M,,,, is increased. A contour 
M= 197, M,,,,=45, N= 12 

plot of the stream function is depicted in Fig. 7, for M = 142, 
hIFREE = 20, N = 14. 

4 NFEV 

1.0000 80 
2.0756 160 

4 NFEV 

3.3472 805 
3.3440 885 

6. EXAMPLE 3: FLOW OVER A WEIR 3.2301 241 3.3409 965 
3.3242 322 3.3393 1045 

The final example examines the potential flow over a tri- 3.2513 403 3.3386 1125 

angular weir under 
3.2511 

gravity (Fig. 8). The stream function 
483 3.3383 1205 

3.3909 563 3.3382 1285 
$(x, y) satisfies 3.3476 644 3.3381 1365 

3.3528 724 

v21)=o in ABCDEFGA (6.1) 

subject to the boundary conditions 
Equation (6.6) has two real positive roots z1 , z2 in [0, H,] 
(and a negative one which is of no interest), provided 

and 

I)=0 on ABCDE (6.2) I<- 2 3H; 

a* 0 
g 27 ’ (6.7) 

-= 
an 

on EF, GA (6.3) 
If inequality (6.7) is satisfied, zi E [0,2H,/3] and 
z2 E [2H,/3, H,]. The physically interesting flows are 
defined by 

11/=4 
I 

(6.4) 

w 
on FG, 

,=J2g(H,-y-0.5) (6.5) 

h, =h2=z1 (supercritical flow ) (6.8) 

h, =h2=z2 (subcritical flow) (6.9) 

h, =z2, h,=z, (critical flow). (6.10) 

where q is the discharge and Ho defines the stagnation level. Of particular interest is the case of critical flow, in which 
For a given value of H, there are three physically inter- one needs to specify either H, or q, the remaining constant 

esting solutions to this problem. Following the analysis of being part of the solution. In the present application H, is 
Aitchison [ 11, by assuming fully developed flow on EF and prescribed and the unknowns in the boundary value 
GA, the heights of EF(h,), and GA(h,) must satisfy (given q) problem (6.1)-(6.5) are the stream function Ic/, the discharge 
the cubic q, and the shape of the free boundary FG. 

The MFS is applied to the particular case when XR = 
2 

z~--H~z’+~=O. (6.6) 
XL = 3.0, p = 0.2, and H, = 1.138 (see Fig. 8). Initially, the 

2g unknown constant q is set equal to 1. The heights h, and h, 
are found by solving (6.6) and setting h, = z2, h, = zl. The 

A(-XL:0.5) B(-zp.-0.5) D(5p.45) 

FIG. 8. Flow over a triangular weir. 

E(xR.-o 5) 
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b o = x.314 

ii = 3.638 

II = i3 

IlFPEE=T;G 

a I:! = 3.514 

r3= 0.638 

p1r=13 

Ia =I3 

c 0 = 3.315 

tJ3= 0.633 

‘,F-‘,l 

‘1 =I4 

d G= 3.3,s 

ii _ 0.639 

II= 14 

tIFPEE=6C 

FIG. 9. (a) Shape of free boundary for Example 3 with M = 177, Mr,, = 50, N = 13, NFEV = 2500; (b) stream function contours for M = 177, 
M rare = 50, N = 13, NFEV = 2500; (c) shape of free boundary for Example 3 with M = 227, MFanE = 60, N = 14, NFEV = 4000; (d) stream function 
contours for M = 227, M,,, = 60, N = 14, NFEV = 4000. 

shape of the free boundary is thus initially taken to be a 
straight line through the points G and F. Subsequently, for 
each value of the constant q, the heights hi and h, are 
updated by solving (6.6). Similarly the y-coordinates of the 
boundary points of EF and GA are updated for each value 
of q. The free parameters of the free boundary are taken to 
be the y-coordinates of the free boundary points. 

Because of the unusual shape of the region and the length 
of the free boundary, for the satisfactory solution of the 
problem more degrees of freedom are required than in either 
of the preceding examples. In all cases the method converges 
to a free boundary with no waves and to a value of q close 
to 3.30 which is the critical value of q obtained by Aitchison 
[l]. A typical example at the convergence of q is given in 
Table IV. 

bO= 2.500 

H 3.538 

PI= 1; 

MFPtIE=2” 

FIG. 10. (a) Subcritical flow for q = 1.5 with M= 137, MFREE = 25, 
N= 12, NFEV =2000; (b) supercritical flow for q = 2.5 with M= 137, 
M = 25, rarE N = 12, NFEF = 2000. 

The shape of the free boundary and a stream function 
contour plot after 2500 function evaluations for the case 
M= 177, MFREE = 50, N = 13 are presented in Fig. 9a, b. In 
this case q converges to 3.314. Similarly, Fig. 9c, d present 
the case M = 227, M,,,, = 60, N= 14 for 4000 function 
evaluations and the value of q converging to 3.315. 

The cases of subcritical flow and supercritical flow are 
considerably easier. For these flows, both q (and hence h, 
or h2) and H, are prescribed in advance. Figure 10a shows 
the stream function contour for the case of subcritical flow 
for q = 1.5 (H, = 1.138) for M= 137, M,,,, = 25, N= 12. 
Figure lob shows the case of supercritical flow for q = 2.5 
for the same discretization. 

7. CONCLUSIONS 

In this study, the performance of the MFS is examined 
on three free boundary problems. The ease of implemen- 
tation of the method and the fact that it only deals with the 
boundary of the region of the problem under consider- 
ation make it well suited for the numerical solution of the 
problems in question. The parameters describing the shape 
and position of the free boundary are naturally included 
in the non-linear least squares minimization scheme, thus 
avoiding the necessity to devise iterative schemes for reposi- 
tioning the free surface, the convergence of which could 
be doubtful. Further, the method can also accommodate 
extra unknowns of the problem (Examples 2 and 3) at no 
extra effort. In almost all the cases examined the method 
converges to the correct solution with poor initial approx- 
imations for the position of the free boundary and other 
unknown quantities. In some instances, due to the presence 
of boundary singularities, one expects a relatively large 
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number of degrees of freedom to accurately represent 
the solution. This situation was observed in Example 2 
(Table II), where poor convergence is obtained for few 
degrees of freedom. It is worth noticing the accumulation 
of sources near the singular point (Fig. 5) which confirms 
that the method captures the qualitative behaviour of 
the solution. One of the drawbacks of the method is the 
tendency of the singularities to move to the interior of the 
domain. This can be easily overcome with an internal check 
as described in Section 3. 
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